Fuzzy-Based Extraction of Vascular Structures from Time-of-Flight MR Images
نویسندگان
چکیده
In this paper an automatic fuzzy based method for the extraction of the cerebrovascular system from 3D Time-of-Flight (TOF) MRA image sequences is presented. In order to exclude non-brain tissue an automatic skull stripping method is applied in a preprocessing step. Based on the TOF images vesselness and maximum parameter images are computed first. These parameter images are then combined with the TOF sequence using a fuzzy inference. The resulting fuzzy image offers an improved enhancement of small as well as malformed vessels against the remaining brain. Finally, the fuzzy-connectedness approach is used to extract the vascular system. A first evaluation showed that the fuzzy-based method proposed performs better than a state of the art method and yields results in the range of the inter-observer variation.
منابع مشابه
Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملSWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کاملComparison the Accuracy of Fetal Brain Extraction from T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR Image with T2-True Fast Imaging with Steady State Free Precession (TRUFI) MR Image by Level Set Algorithm
Background Access to appropriate images of fetal brain can greatly assist to diagnose of probable abnormalities. The aim of this study was to compare the suitability of T2-True Fast Imaging with Steady State Free Precession (T2-TRUFI), and T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (T2- HASTE( magnetic resonance imaging (MRI) to extract the fetal brain using the level set algorithm...
متن کاملSWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Studies in health technology and informatics
دوره 150 شماره
صفحات -
تاریخ انتشار 2009